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Abstract

Domain transfer learning generalizes a learning model across training data and testing data
with different distributions. A general principle to face this issue is by reducing the distribution
difference between the training and the testing data such that the generalization error can be
bounded. The technique proposed in our project is through Transfer Kernel Learning, to learn
a domain invariant kernel. Specifically, we design a family of spectral kernels by extrapolating
target eigensystem on source data points with Mercer’s Theorem and Nyström approxima-
tion.The spectral kernel minimizing the approximation error to the original source kernel is
selected to construct the domain invariant kernel. Several experiments have been performed
over text, image and brain data to identify the effectiveness of Transfer Kernel Learning over
normal SVM algorithm.

1 Introduction

Most of the machine algorithms out there, are build upon the basic principle that the training
and testing data are from same distributions. However, in today’s era, generation of data from
many heterogeneous sources, in domains of texts, images and videos has created a compelling
requirement to build models that generalize well across all these different distributions. So for
example, if we wish to build an object detection model which has been trained on datasets from
one particular domain(say web cams) and tested on images from some other domain(say dslr’s),
then the results would definitely not be up to the mark. Similarly a survey conducted in one region,
might not necessarily be applicable in some other region because of difference in population.

Added to this is the fact that when the distributions are different, most statistical models
have to be remodeled from scratch using the newly collected training data. However, in many
real-world applications, it is quite expensive(or even impossible) to recollect the needed training
data and update the models. Hence in such cases, devising a method to successfully transfer
the knowledge between the two different domains is highly desirable. The domain invariant task
that we employ in this paper involves using two distinct types of datasets - a source and a target
domain. Source domain basically includes the labeled training data using which a successful
classifier can be constructed. The target domain is the testing/unlabeled data from a different yet
related distribution. Our goal is to minimize this distribution mismatch, such that our classifier is
adaptive across domains.

A lot of prior work has been done is this area. A general approach to tackle this problem involves
minimization of distribution difference between the source and target domain. Such distribution
discrepancies can be formalized using the KL divergence, Bregman divergence and Maximum
Mean Discrepancy (MMD). However, the applicability of KL and Bregman divergence is hindered
by the need of a density estimation procedure which is computationally inefficient. Similarly,
joint minimization of MMD along with the empirical loss is a Semi Definite Programming(SDP)
problem, which is of the order O(n6.5). The novelty in our approach, is that the distribution
mismatch is corrected using Nyström approximation error, which is both computationally efficient
and gives good results.
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2 Preliminaries

2.1 Mercer Theorem

Let k(z,x) be a continuous symmetric non - negative function which is positive semi - definite and
square integrable w.r.t. distribution p(x), then,

k(z,x) =
∑∞

i=1 λiφi(z)φi(x)

The eigenvalues λi’s and the orthonormal eigenfunctions φi’s are the solutions of the following
integral equation, ∫

k(z,x)φi(x)p(x)dx = λiφi(z)

2.2 Spectral Kernel

If a positive semi-definite kernel matrix K ∈ IRn×n has the eigensystem {γi, φi}, γ1 ≥ . . .≥ γn≥ 0
, then the family of matrices,

Kλ =
∑∞

i=1 λiφiφ
T
i , λ1 ≥ · · · ≥ λn ≥ 0

will produce PSD kernels with Kλ as kernel matrices.

3 Transfer Kernel Learning

3.1 Problem Formulation

Definition 1 : A domain D is composed of a d-dimensional feature space F and a marginal
probability distribution P (x), i.e, D = {F, P (x)},x ∈ F

Definition 2 : Given domain D, a task T is composed of a c - cardinality label set Y and a
classifier f(x), i.e, T = {Y, f(x)}, where y ∈ Y and f(x) = P (y | x) can be interpreted as the
conditional probability distribution.

Problem Statement (Transfer Kernel Learning)
Given a labeled source domain Z = {(z1, y1), . . . , (zm, ym)} and an unlabeled target domain
X = {x1, . . . ,xn} with FZ = FX , YZ = YX , P (z) 6= P (x) and P (y | z) = P (y | x) , learn a
domain invariant kernel k(z,x) =< φ(z), φ(x) > such that P (φ(z)) ' P (φ(x)) .

3.2 Learning Approach

As discussed in the problem formulation above, we wish to come up with a mapped feature space
where the distributions are similar i.e P (φ(x)) ' P (φ(z)). To have the distributions to be similar,
it suffices to have the kernel matrices of the source and target domain to be similar, i.e KX ' KZ .
To observe this, note that a kernel matrix K, can be written as K = (KK−1/2)(K−1/2K), and
it’s corresponding empirical kernel map can be written as φemp = K1/2. Therefore, if two kernel
matrices are the same, i.e., KX ' KZ , then their corresponding empirical feature maps would
also be the same, i.e, φ(x) ' φ(z) and as a result the empirical distributions of the data in the
mapped feature space would be the same, i.e, P (φ(x)) ' P (φ(z)).

But there is no certainty that the two kernel matrices would have the same dimensions, making
them unable to be compared. Hence we use Nyström approximation to come up with an
extrapolated source kernel KZ , to compare it to the original source kernel, using the eigensystem
of the target kernel KX
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3.3 Nyström Kernel Approximation and Extrapolation

We start off with approximating the integral equation mention under 2.1, by its emperical estimate:

n∑
j=1

k(z,xj)φi(xj)

n
' λiφi(z) (1)

As we vary z over X in the above equation, we come up with its matrix form:

KXΦ
′
X = Φ

′
XΛ

′
X (2)

Also since KX is a kernel matrix, using the standard eigendecomposition we can write it in the
form :

KXΦX = ΦXΛX (3)

By comparing the two equations we can easily find out the values of the eigenfunction φi(xj)’s and
λi’s. Formally, it would be equal to :

φi(xj)√
n

= [ΦX ]ij , nλi = [ΛX ]ii (4)

Now we can use equation (1) to extrapolate the eigenfunction φi at any arbitrary point z by

φi(z) =
∑n

j=1
k(z,xj)φi(xj)

n . So, evaluating eigenfunction φi on a new dataset Z = {z1, . . . , zm}
with distribution p(z) leads to the approximation :

ΦZ ' KZXΦXΛ−1
X (5)

where KZX ∈ IRm×n, is the cross domain similarity matrix between Z and X evaluated using our
chosen kernel k. Further using the Mercer’s theorem explained above,

KZ ' ΦZΛXΦT
Z = KZXK−1

X KXZ (6)

This entire procedure is the method of Nyström Kernel Approximation. Note that this approx-
imation is valid only if the probability distributions of the source and target domain are similar, i.e,
p(z) ' p(x). If the distributions are substantially different, then the Nyström approximation error
would be very large. So, in a sense the Nyström approximation error embodies the distribution
difference across domains. Hence minimizing this error is essentially equivalent to reducing the
distribution divergence between our source and target domains. Finally to reduce the error, we
relax the the eigenvalues and use the idea of Spectral Kernel Design to create a family of kernels
using the eigensystem of the extrapolated source kernel ΦZ. This eigensystem, built using the
target kernel KX , preserves its key structure and simultaneously allows itself to be reshaped to
minimize the error. As a result, our extrapolated source kernel becomes :

KZ = ΦZΛΦ
T
Z (7)

3.4 Nyström Approximation Error Minimization

Now we reduce the distribution difference between the source and target domains by minimizing
the Nyström approximation error between the extrapolated source kernel and the original source
kernel under Frobenius Norm :

min
Λ
||KZ −KZ ||F

λi ≥ ζλi+1, i = 1, . . . , n− 1

λi ≥ 0, i = 1, . . . , n

(8)
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where Λ = diag(λ1, ..., λn) are the non-negative eigen spectrum parameters. Here note that
ζ ≥ 1 is taken to increase the contribution of the topmost eigenvalues. By linear algebra, the above
norm reduces to :

min
λ
λTQλ− 2rTλ

Cλ ≥ 0

λ ≥ 0

where Q = (Φ
T
ZΦZ)� (Φ

T
ZΦZ)

r = diag(Φ
T
ZKZΦZ)

C = I− ζI

(9)

Here I ∈ IRn×n is the identity matrix and I ∈ IRn×n, is the 1th-diagonal matrix with the nonzero
elements Ii,i+1 = 1, i = 1, . . . , n − 1. Instead of using all the eigenvalues and vectors of KX , we
choose only the top r eigenvalues to make the calculations faster. So ΦZ ∈ IRm×r, λ ∈ IRr×1 and
Q ∈ IRr×r

3.5 Domain - Invariant Kernel

After solving the optimization problem formulated above, it is straight forward to construct the
domain invariant kernel KA on the source and target data A = Z ∪ X. Based on the spectral
design, the invariant kernel can be generated from the domain-invariant eigensystem {Λ,ΦA} as:

KA =

[
ΦZΛΦ

T
Z ΦZΛΦT

X

ΦXΛΦ
T
Z ΦXΛΦT

X

]
= ΦAΛΦ

T
A (10)

where ΦA
∆
= [ΦZ ; ΦX ] are the extrapolated eigenvectors over the entire data of the source and

target domain. Now the extrapolated source kernel which minimized the approximation error,

KZ = ΦZΛΦ
T
Z , is directly fed to the SVM for model building. Finally our classifier turns out to

be :
yX = KXZ(α� yZ) + b (11)

where KXZ = ΦXΛΦ
T
Z is obtained from the domain invariant kernel. For any out of sample

prediction on a dataset X0, a similar approximation, that we did earlier, of the eigensystem and
cross domain kernel matrix is performed.

ΦX0 = KX0XΦXΛ−1
X (12)

KX0Z = ΦX0ΛΦ
T
Z (13)

4 Experiments

4.1 Text Dataset

We tested on two text datasets namely - 20newsgroup and reuters. Both of these were collection of
documents, each having the frequency of words in the documents, which was further preprocessed
using TF-IDF. The newsgroup data was composed of four main categories : rec, sci, main and
talk. Each of these categories were further subdivided into 4-5 subcategories. The reuters dataset
was composed of five main categories : orgs, people, places, exchanges and topics. We carried out
a binary classification task separately between two random categories, with both of the datasets.
So, for the newsgroup data, we randomly picked two categories and used two subcategories each
(totalling four), from both of those categories to form the source domain. The rest were put in the
target domain. Such a construction leads to formation of ∼200 datasets. For feasibility purposes
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we tried only on 12 datasets. A similar construction was done for the reuters dataset(without any
subcategories). For comparative study, the cost parameter was empirically chosen to be 10.0 and ζ
to be 2.0 and a linear kernel was used. The accuracies are shown in the table. As is clearly visible,
TKL outperformed SVM in all the instances. Since all the subcategories had some difference in
distribution, TKL was successfully able to transfer it and design a better model.

Dataset SVM TKL

NEWSGROUP
comp vs talk 87.19 94.00
rec vs talk 84.80 94.58
sci vs talk 70.39 87.03

REUTERS
org vs places 72.26 77.64

people vs places 55.52 67.40
places vs org 70.27 77.08

4.2 Image Dataset

For this experiment, we used a corpus of images obtained from a variety of sources, namely :
Amazon(A), DSLR(D), Webcam(W) and Caltech(C). The features were scaled and an rbf kernel
was used along with a cost of 10.0 and ζ as 1.1. Here the task at hand was a multilabel classification
problem. All the different sources of images had the same categories of objects like : TV’s,
backpack’s, monitor’s etc. We selected two domains randomly and used them as source and target
domain respectively. A similar trend as with the text dataset was observed, wherein TKL was able
to give more accurate results.

Dataset SVM TKL

D - W 63.05 86.10
A - W 38.30 43.08
C - A 53.13 56.10
A - D 43.94 47.13

4.3 fMRI Dataset

We were motivated to try out TKL on an fmri dataset primarily because the brain image that is
captured for different subjects varies in distribution. There are multiple reasons behind it. Firstly,
the anatomical size of the brain and the level of brain activity varies across people. Secondly, even
a slight movement of the head generates noise in the captured brain images. For those reasons,
designing a generalized classifier across different subjects is a difficult task. The dataset we had
was of six subjects. Each of them was shown a picture or a sentence and their corresponding
brain activity was recorded. The classification task was to successfully classify, by a subject’s
brain image, whether the subject was looking at a picture or a sentence. We performed three
experiments where we had equal number of subjects in both the target and the source domain,
with a cost of 10 and ζ as 2 with a linear kernel. The number of subjects in those domains were
varied from one to three .The accuracies are listed below in the table. Here, TKL gave either
better or almost similar results, which suggests that perhaps with better feature engineering one
might be able to get better results. However, nothing can be claimed conclusively.
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Figure 1: Accuracies obtained over text and image datasets

Dataset SVM TKL

1S - 1T 48.45 53.00
2S - 2T 50.00 52.00
3S - 3T 54.00 53.00

5 Scalable Implementation

Complexity of the proposed method is of O(n2), hence it is not viable for large data sets. But the
Nyström method also allows us to approximate large kernel matrices. We start of with choosing
a random subset of data from both the target and the source domain, so that we have the ma-
trices, KXX̂ ∈ IRn×n̂ and KZẐ ∈ IRm×m̂. Eigensystem of the matrix KX̂ can be computed using
eigendecomposition and can be used with equation (5) to find the target domain’s eigensystem.

ΦX ' KXX̂ΦX̂Λ−1

X̂
(14)

Similarly using equations (5) and (6), the extrapolated eigensystem of the source kernel, ΦZ ,
and the kernel matrix KZ , used in the QP, can be found out as :

ΦẐ ' KẐXΦXΛ−1

X̂

ΦZ ' KZẐΦẐΛ−1

X̂

KZ ' KZẐK−1

Ẑ
KẐZ

(15)

The overall complexity of our earlier approach comes out to be O((r+ p)(m+ n)2) where p is the
dimension of the dataset. The scalable approach reduces this complexity to O((r+p)(m+n)(m̂+n̂))

6 Conclusion

The purpose of the project was to learn better models by reducing the distribution mismatch
between training and testing data. This was achieved by using minimization of the Nyström
appoximation error. Experiments that were conducted over text and image datasets showed that
the domain invariant kernel was indeed able to capture the information and gave particularly better
results than SVM. The accuracies obtained for text domain classification were significantly higher
than those for image and brain data. We believe this happened due to the larger distribution
difference between images as compared to text. For the fmri data, TKL showed either better or
almost similar results, which suggests that perhaps with better feature engineering one might be
able to get better results. Although TKL failed to perform as good on out of sample data, as SVM.
Owing to this, the high accuracies for newsgroups dataset might actually be due to overfitting.
More experiments and tests need to be conducted to better understand the behaviour. Further
work might include using a regularizer in the optimization problem to keep a check on overfitting.
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