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Abstract

Traditional Image super-resolution is the task of infer-
ring a high-resolution image from a single low-resolution
input. We aimed to build upon it and improve the generated
output by providing an additional reference image as input
during training. Our experiments have been performed on a
feed forward fully convolutional deep network. We explore
different network structures and other parameter settings to
improve performance and get better reconstruction quality.
While we were not able to outperform our baseline model,
the results obtained were on par with it in most cases.

1. Introduction

Super resolution (SR) is defined as the task of recovering
a high resolution (HR) image from its low resolution (LR)
counterpart. This problem has been there for many years
but has been receiving tremendous attention in recent years
owing to the deep learning revolution. The task is not trivial
though, on account of its ill-posed nature - Many different
HR images map to the same LR image. Especially for large
downsampling ratios, high-frequency information is lost
which renders the textured information in super-resolved
images overly smoothed and blurry.

In our work we tried to overcome this issue by providing
an additional HR image along with the input during
training. This image (which we’ll henceforth refer to as
reference image) is similar to the LR image. The motivation
behind the idea is that perhaps the network might draw
some relevant information from the reference image to
improve the generated HR image. We super resolve the
image by a factor of x4

This is similar to example based super resolution which
also uses external images. The difference is that we only
use a single reference image as opposed to a large dataset
of external images used for the former. Also example based
SR involves multiple stages of learning as opposed to a sin-
gle end to end learning strategy that is employed for neu-
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Figure 1. Example Super Resolution : Left image is a low resolu-
tion input image while the right image is its super resolved coun-
terpart obtained using a Deep CNN (ours)

ral networks. We experimented with several ideas and ar-
chitectures to incorporate this additional information. To
our knowledge, this is the first experiment of its kind using
CNN’s.

2. Related Work

Image super-resolution is a classical problem with sev-
eral approaches proposed over a decade. Early interpolation
methods such [6] based on sampling theory, achieved blurry
results. A large number of better performing algorithms
have been surveyed by Yang et al [4].

Other popular classical approaches include learning
mappings between low and high resolution image patches
[14], [8]. Further, dictionary based methods that learn a
sparse representation of the image patches [18], [11], [15]
as well as neural network based approaches that use CNNs
[10], [3], [2] have become popular.

The images that these models produce tend to be blurry
because Mean Square loss minimization is used. Alterna-
tive losses such as perceptual loss, that calculates the L2 dif-



Figure 2. Example Triplet. From left to right : LR image, HR
image and the reference image

Figure 3. Different scrambled /..y obtained using L1, L2 and hy-
percolumn respectively for I r at the leftmost

ference in the feature space obtained after passing it through
a pre-trained CNN like VGG have been suggested [5], [12].
The current state of the art method [13] uses a Residual net-
work based architecture coupled with a generative adversar-
ial network. We have used an architecture similar to theirs.

3. Method

In SR, the aim is to produce an HR image that has been
downsampled to a low-resolution image

Inr = do(IuR)
Iest = f(ILR)

using a downsampling operator d,. The task of image
super-resolution is to provide an approximate inverse f of
d, estimating I from I; . The traditional deep learn-
ing approach is to learn f by a CNN, minimizing the L2
distance between the estimated HR image, I.,; and ground
truth I r. For our case this equation becomes,

Iest = f(ILRaIref)

where I..r is the reference image additionally provided to
the network. The size of I,..; is same as that of Ir. An
assumption that we worked on is that the network should
already know which part of I,..; should be used while re-
construction of a specific portion of I r. For this purpose
we scrambled the I,.. ¢ initially in patches and fed that to our
network. Details are provided in the Experiments section.

4. Approach
4.1. Dataset

For the purposes of our experiment we used VGG’s
flowers dataset which contains 102 categories, each having
more than 40 images. The images are of different sizes.
We took a center crop to remove unnecessary background
information and then scaled down the image to a size of
160 x 160. This served as our Ir;r. We downsampled this
again by a factor of 4, to get I, . Downsampling was done
using “bicubic’ interpolation.

From each of these classes, we used three images which
formed the dataset for our baseline model (model without
I,cy). For all other experiments using this same subset of
data, we created triples of the form (Irr, Inr, Irer). Here
the 1.y was chosen from the remaining two images of the
particular class. During training, one of these I,.;’s was
randomly picked. We felt this would help prevent the model
from overfitting. An example triplet has been shown in Fig-
ure 2. We used data augmentation only for our baseline
model.

4.2. Experiments

In this section we have reported the experimentation de-
tails !. We first mention the experiments that worked and
later talk about the ones that didn’t.

4.2.1 Baseline model

Our baseline model is a fully convolutional net similar to
the one used by [13]. We used 6 residual blocks as opposed
to 18, that they used in their experiments. Their network
is based on the Residual architecture with a small modifi-
cation. They have an additional skip connection between
the start and the end of the residual blocks as can be seen
in Figure 4. For upsampling they used a pixel shuffle layer
proposed by [17] which is a much more computationally ef-
ficient. The network was trained on (/1 r, [y r) image pairs
using Adam optimizer with MSE as the loss. The image is
not downsampled at any stage in the network since we don’t
want to lose out on the information that we already have.

4.2.2 Baseline + Scrambled /... image

As described earlier, before passing the I, to the network
we scrambled its pixel-patches according to the similarity
of LR image pixel-patches. More concretely, for each
pixel-patch in the Iy, g, the closest pixel patch in the I,
was found. This new ’scrambled’ I,. is inputted into the
network. This additional step is to help the network under-
stand where to get the information from. We experimented

Code can be accessed from : https://github.com/shreeshl/SISR


http://www.robots.ox.ac.uk/~vgg/data/flowers/
http://www.robots.ox.ac.uk/~vgg/data/flowers/

B residual blocks
A

"'k3n64s1  k3n64s1

k9n64s1

' k3n6ds1  k3n256s1

PixelShuffler x2

skip connection

M residual blocks

k9n64s1 ! k3n64s1  k3n64s1

)
3]
<
o

2
5]

o

I Concatenate

skip connection

Figure 4. The architecture that we used (top portion of the image borrowed from [13]). Reference in the bottom network refers to the I,.. ¢

with different metrics (such as L2, L1, HOG, hypercolumn
vector [9]) to measure patch similarity. We stuck with
L2 loss which seemed to work better than the rest. An
illustration of these different metrics can be seen in Figure
3. A patch size of 40 x 40 was used for all experiments.
Patches of smaller sizes were biased towards a few handful
patches hence those sizes weren’t used. A patch in I g is
compared with all patches of size 40 in I,..; with a stride
of 10 (for computational efficiency).

This scrambled image is now passed through a smaller but
similar architecture as the baseline. This had 3 instead of 6
residual blocks. The convolutional volume obtained after
passing the scrambled I,y through this network is then
concatenated to the volume after the upsampling layer of
the baseline. We append this after upsampling layer for the
same reason that was mentioned earlier. We don’t want to
lose out on the information of I,.; by downsampling it.
There is a layer of filters that operates on this concatenated
volume and finally reduces it to our required image size.

4.3. Baseline + Scrambled I, grayscale image

A similar experiment as above was tried but with a
grayscale I..y. This was to see if reducing the colour de-
pendency makes the network focus more on other details.

4.4. Pretrained Baseline + Scrambled I...; image

A similar experiment as above but with a pretrained
baseline model. Network convergence was slow with the
earlier models. Also since ideally this network should also

be able to produce images atleast as good as the baseline,
we reinforced this constraint by using the pretrained base-
line. The results and convergence both were better.

4.5. Experiments that didn’t work

We didn’t find any prior work similar to ours hence there
wasn’t a clear guideline regarding what would work. A few
such failures listed below.

e Minimizing the texture loss (used by Sajjadi et al [16]
for SR, inspired by the style loss of Gatys et al [7])
between matched patches in the I.s; and I,..;. The
network didn’t seem to converge.

e Since patch matching is more of a coarse similarity,
we thought of using a more fine grained similarity. We
passed both I, g and I,..; through a pretrained VGG16
network. Convolutional volume obtained after ’conv3’
layer is extracted for both images. This volumes are
normalized and then multiplied to get a correlation ma-
trix (Each volume has size h x w X c¢. This is reshaped
to hw x c. The correlation matrix thus obtained has
size hw x hw). This matrix essentially captures the
similarity between any two pixels. We apply a soft-
max over it to get a probability distribution over the
pixels in ;... A new ’dense’ scrambled I,..; volume
is obtained by multiplying this correlation matrix with
I,cy’s original volume. In this ’dense’ volume, each
pixel in a particular location is a weighted combination
of all pixels in I,..y (weighted by its similarity to pixels
in I, g). Since this volume has a size of 40 x 40 X ¢, it
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Figure 5. From left to right : Ground truth, Scrambled Reference Image, SR using Bicubic interpolation, SR with Pretrained Baseline +
Reference, Baseline



couldn’t be appended after upsampling layer since that
had a size of 160 x 160 x ¢. Therefore this was con-
catenated in the middle of the network. The network
convergence was very slow and by looking at the .,
it didn’t look like it would converge.

5. Results

Multiple sets of images obtained using the Baseline and
Pretrained Baseline + Scrambled have been displayed in
Figure 6. The images used for testing are from another
VGG flowers dataset which is a smaller dataset with 18
classes. As you can notice, the best results are obtained
with baseline and the model with I,..; seems to give images
with some checkerboard effects. The PSNR (Peak Signal
to Noise Ratio) values have also been reported in Table 1.
Although PSNR is a popular metric for SR evaluation, its
values don’t present a clear picture of the actual scenario.
When you compare the SR of bicubic to SR with reference
image, although noisier, the generated images looks percep-
tually much better for the latter but only have a slightly bet-
ter PSNR.

Method PSNR
Bicubic 23.69
Baseline 26.31
Baseline + Scrambled 24.07

Baseline + Greyscale Scrambled  24.09
PretrainedBaseline + Scrambled  24.53
Table 1. Comparison between PSNR scores of diff. methods

6. Discussion and Conclusion

In our project we aimed to experiment if SR could
be improved by providing an additional reference image
during training. Although it seemed likely that this would
improve reconstruction, after our experiments we realized
it is not a trivial task.

We experimented with different architectures to im-
prove the traditional task of SR using a reference image.
We weren’t able to outperform the baseline scores. This
might be due to our network not being deep enough or it
needed more time to converge (our aim was not to get the
best accuracy but to see what works and what doesn’t) or
just that our approach wasn’t correct. We didn’t perform
extensive hyperparameter tuning too which could have
improved the performance. The dataset that we worked
with was a little harder as well. Perhaps a dataset related
to buildings would have been a better choice to experiment
with since the correlations are much easier to find. We were
motivated to go ahead with the flowers dataset with the
hope that, despite the reference image not being obviously

Figure 6. Example images obtained using Baseline + Scrambled
and Pretrained Baseline + Scrambled. These images have a differ-
ence of 1.3 in their PSNR values but still no visible difference is
noticeable

similar, the network might be able to learn filters to detect
the relevant information and improve reconstruction.
Future work might also include incorporating the GAN
framework in this experiment. It helped make the images
more ‘real’ for SR in a recent paper by Ledig et al [13] and
could work here too. Finally, the *dense’ way of scrambling
the image seemed as the most general approach to tackle
this and thus could be explored in more detail.
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